
TUNING FUNDAMENTALS

Basics of Proportional-
Integral-Derivative Control
PID controllers are byfar the most popularfeedback controllers

for continuous processes. Here's a look at how they work.

Vance J. VanDoren, CONTROL ENGINEERING

A feedback controller is designed to gen-

erate an output that causes some cor-

rective effort to be applied to a process so

as to drive a measurable process variable towards

a desired value known as the setpoint. The con-

troller uses an actuator to affect the process and a

sensor to measure the results. Figure 1 shows a

typical feedback control system with blocks rep-

resenting the dynamic elements of the system and
arrows representing the flow of information, gen-

erally in the form of electrical signals.

Virtually all feedback controllers determine

their output by observing the error between the

setpoint and a measurement of the process vari-

able. Errors occur when an operator changes the

setpoint intentionally or when a process load

changes the process variable accidentally.

In warm weather, a home thermostat is a famil-

iar controller that attempts to correct temperature

of the air inside a house. It measures the room
temperature with a thermocouple and activates

the air conditioner whenever an occupant lowers

the desired room temperature or a random heat

source raises the actual room temperature. In this

example, the house is the process, the actual

room temperature inside the house is the process

variable, the desired room temperature is the set-

point, the thermocouple is the sensor, the activa-

tion signal to the air conditioner is the controller

output, the air conditioner itself is the actuator,

and the random heat sources (such as sunshine

and warm bodies) constitute the loads on the

process.

PID control
A proportional-integral-derivative or PID con-

troller performs much the same function as a ther-

mostat but with a more elaborate algorithm for

determining its output. It looks at the current

value of the error, the integral of the error over a

recent time interval, and the current derivative of

the error signal to determine not only how much
of a correction to apply, but for how long. Those
three quantities are each multiplied by a tuning

constant and added together to produce the cur-

rent controller output CO(t) as in equation [1].

In this equation, P is the proportional tuning con-

stant, I is the integral tuning constant, D is the

derivative tuning constant, and the error e(t) is the

difference between the setpoint P(t) and the

process variable PV(t) at time t. If the current

error is large or the error has been sustained for
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Fig. 1:Most feedback controllers for continuous processes use the proportional-derivative-integral

(PID) algorithm to manipulate the process variable by applying a corrective effort to the process.
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P is the proportional tuning constant

Fig. 2:A cruise controller

attempts to minimize

errors between the

desired speed set by the

driver and the car's

actual speed measured
by the speedometer.

The controller detects a

speed error when the

desired speed is

increased or when an
added load (such as

an uphill climb)

slows the car.

A CRUISE CONTROLLER
On-board computer

Desired speed
(from driver)

some time or the error is changing rapidly, the

controller will attempt to make a large correction

by generating a large output. Conversely, if the

process variable has matched the setpoint for

some time, the controller will leave well enough
alone.

TUning the controller
Conceptually, that's all there is to a PID controller.

The tricky part is tuningit; i.e., setting the P,l, and
D tuning constants appropriately. The idea is to

weight the sum of the proportional, integral, and
derivative terms so as to produce a controller out-

put that steadily drives the process variable in the

direction required to eliminate the error.

The brute force solution to this problem would
be to generate the largest possible outputby using
the largest possible tuning constants. A controller

thus tuned would amplify every error and initiate

extremely aggressive efforts to eliminate even the

slightest discrepancy between the setpoint and
the process variable. However, an overly aggres-

sive controller can actually make matters worse
by driving the process variable past the setpoint

THE PID EQUATION

CO(t) = P-e(t) + 1- e(t)dt + D- ± e(t)
dt

CO(t) = P- e(t) + e(t)dt - T. IpV(t)

Equations [1] and [6]-Both forms of the PID algorithm generate an
output CO(t) according to recent values of the setpoint SP(t), the

process variable PV(t), and the error between them e(t) = SP(t) - PV(t)

as it attempts to correct a recent error. In the

worst case, the process variable will end up even

further away from the setpoint than before.

On the other hand, a PID controller that is

tuned to be too conservative may be unable to

eliminate one error before the next one appears.

A well-tuned controller performs at a level some-

where between those two extremes. It works
aggressively to eliminate an error quickly, but

without over doing it.

How to best tune a PID controller depends upon
how the process responds to the controller's cor-

rective efforts. Processes that react instantly and
predictably don't really require feedback at all. A
car's headlights, for example, come on as soon as

the driver hits the switch. No subsequent correc-

tions are required to achieve the desired illumi-

nation.

On the other hand, the car's cruise controller

cannot accelerate the car to the desired cruising

speed so quickly. Because of friction and the car's

inertia, there is always a delay between the time

that the cruise controller activates the accelerator

and the time that the car's speed reaches the set-

point. A PID controller must be tuned to account

for such lags.

PID in action
Consider a sluggish process with a relatively long

lag—an overloaded car with an undersized
engine, for example. Such a process tends to

respond slowly to the controller's efforts. If the

process variable should suddenly begin to differ

from the setpoint, the controller's immediate reac-

tion will be determined primarily by the actions of

the derivative term in equation [ 1] . This will cause

the controller to initiate a burst of corrective

efforts the instant the error changes from zero. A
cruise controller with derivative action would kick

in when the car encounters an uphill climb and
suddenly begins to slow down. The change in

speed would also initiate the proportional action

that keeps the controller's output going until the

error is eliminated. After a while, the integral

term will also begin to contribute to the con-
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I is the integral tuning constant

A TYPICAL PROCESS MODEL

PV(t) - K-CO(t - d) - T ML PV(t)
j
+ LV(t) O

Equation [2]-The process variable PV(t) is a function of its own derivative

plus an earlier output from the controller CO(t-<J) and a random load

variable LV(t). A PID controller for this process can be tuned according to the

values of the parameters K, T, and d.

(roller's output as the error accumulates

over time. In fact, the integral action will

eventually come to dominate the output

signal since the error decreases so slow-

ly in a sluggish process. Even after the

error has been eliminated, the controller

will continue to generate an output based
on the history of errors that have been
accumulating in the controller's integra-

tor. The process variable may then over-

shoot the setpoint, causing an error in the

opposite direction.

If the integral tuning constant is not too

large, this subsequent error will be small-

er than the original, and the integral

action will begin to diminish as negative

errors are added to the history of positive

ones. This whole operation may then
repeat several times until both the error

and the accumulated error are eliminat-

ed. Meanwhile, the derivative term will

continue to add its share to the controller

output based on the derivative of the oscil-

lating error signal. The proportional
action, too, will come and go as the error

waxes and wanes.

Now suppose the process has very lit-

tle lag so that it responds quickly to the

controller's efforts. The integral term in

equation [1] will not play as dominant a

role in the controller's output since the

errors will be so short lived. On the other

hand, the derivative action will tend to be
larger since the error changes rapidly in

the absence of long lags.

Clearly, the relative importance of each
term in the controller's output depends
on the behavior of the controlled process.

Determining the best mix suitable for a

particular application is the essence of

controller tuning.

For the sluggish process, a large value

for the derivative tuning constant D might
be advisable to accelerate the controller's

reaction to an error that appears sudden-

ly. For the fast-acting process, however,

an equally large value for D might cause
the controller's output to fluctuate wildly

as every change in the error (including

extraneous changes caused by measure-
ment noise) is amplified by the con-

troller's derivative action.

Three tuning techniques
There are basically three schools of

thought on how to select P, I, and D val-

ues to achieve an acceptable level of con-

troller performance. The first method is

simple trial-and-error—tweak the tuning
constants and watch the controller handle

the next error. If it can eliminate the error

in a timely fashion, quit. If it proves to be
too conservative or too aggressive,

increase or decrease one or more of the

tuning constants.

Experienced control engineers seem to

know just how much proportional, inte-

gral, and derivative action to add or sub-

tract to correct the performance of a poor-

ly tuned controller. Unfortunately,
intuitive tuning procedures can be diffi-

cult to develop since a change in one tun-

ing constant tends to affect the perfor-

mance of all three terms in the

controller's output. For example, turning

down the integral action reduces over-

shoot. This in turn slows the rate of

change of the error and thus reduces the

derivative action as well.

The analytical approach to the tuning
problem is more rigorous. It involves a
mathematical model of the process that

relates the current value of the process
variable to its current rate of change plus

a history of the controller's output. Ran-
dom influences on the process variable

from sources other than the controller

can all be lumped into a load variable

LV(t). See equation [2). This particular

model describes a process with a gain of

K, a time constant of T, and a deadtime of

d. The process gain represents the mag-
nitude of the controller's effect on the

process variable. A large value of K cor-

responds to a process that amplifies small

control efforts into large changes in the
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D is the derivative tuning constant

A PROCESS MODEL FOR A CAR WITH CRUISE CONTROL

^.n.-C«>(t) - ISHcHon-vW " F,oad(t) = m[ £ v(t)] O

v(t) = KCO(t) - T-i v(t) + LV(t)
at

Equations [3], [4], and [5]-The car's velocity v(t) is a function of the cruise controller's

output CO(t), the car's current acceleration a(t), and a load variable LV(t). The load

variable represents forces on the car from sources other than the engine and friction.

process variable.

Time constant T in equation [2] rep-

resents the severity of the process lag.A
large value of T corresponds to a long

lag in a sluggish process. The deadtime

d represents another kind of delay pre-

sent in many processes where the con-

troller's sensor is located some distance

from its actuator. The time required for

the actuator's effects to reach the sensor
is the deadtime. During that interval,

the process variable does not respond at

all to the actuator's activity. Only after

the deadtime has elapsed does the lag

time begin.

In the thermostat example, the duct-

work between the air conditioner and
the thermostat causes a deadtime since

each slug of cool air takes time to travel

the duct's length. The room tempera-

ture will not begin to drop at all until the

first slug of cool air emerges from the

duct.

Other characteristics ofprocess behav-

ior can be factored into a process model,

but equation [2] is one of the simplest and
most widely used. It applies to any
process with a process variable that

changes in proportion to its current
value. For example, a car of mass m accel-

erates when its cruise controller calls for

the engine to apply a force F
mtfn<

(t) to the

drive axle. However, that acceleration

a(t) is opposed by frictional forces F
(Hc(ion

(t)

that are proportional to the car's current

velocity v(t) by a factor of K
friclio

. If all other

forces impeding the car's acceleration are

lumped into F^t) and the force applied

by the engine r^Jt) is proportional to

the controller's output by a factor of

Engine' ^en VW W|N °bev equation [2] as

shown in equations [3] through [5].

In equation [5], the process variable is

lMd .new The Process gain is

d the: process time con-

v(t) and the load variable is

LV(t)=-F
load

(t)/K,

K= K . IK,
, an

pngjne friction

stant isT = m/K
(rjqtion

. In this example there

is no deadtime since the speed of the car

begins to change as soon as the cruise

controller activates the accelerator. The
car will not reach itsfinal speed for some
time, but it will begin to accelerate almost

immediately.

If a model like [2] or [5] can be defined

for a process, its behavior can be quanti-

fied by analyzing the model's parameters.

A model's parameters in turn dictate the

tuning constants required to modify
behavior of a process with a feedback con-

troller. There are literally hundreds of

analytical techniques for translating

model parameters into tuning constants.

Each approach uses a different model,

different controller objectives, and differ-

ent mathematical tools.

The third approach to the tuning
problem is something of a compromise
between purely heuristic trial-and-error

techniques and the more rigorous
analytical techniques. It was originally

proposed in 1942 by John G. Ziegler and
Nathaniel B. Nichols of Taylor Instru-

ments and remains popular today
because of its simplicity and its app-

licability to any process governed by a

model in the form of equation [2].

The Ziegler-Nichols tuning technique
will be the subject of "Back to Basics"

(CE, Aug. 1998).

Application issues
Experienced PID users will note that

none of the discussion so far applies

directly to the commercial PID con-

trollers currently running more than 90%
of their industrial processes. Several sub-

and
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tie flaws in the basic PID theory have

been discovered during the last 50 years

of real-life applications.

Consider, for example, the effects of

actuatorsaturation. This occurs when the

output signal generated by the controller

exceeds the capacity of the actuator. In

the cruise control example above, the

PID formula may at some point call for a

million 16 lbf-ft torque to be applied to the

drive axle. Mathematically, at least, that

much force may be required to achieve a

particularly rapid acceleration.

Of course real engines can only apply

a small fraction of that force, so the

actual effects of the controller's output

will be limited to whatever the engine

can do at full throttle. The immediate

result is a rate of acceleration much
lower than expected since the engine

is "saturated" at ils mnximuni capacity.

However, it is the long-term conse-

quences of actuator saturation that have
necessitated a fix for equation [1]

known as antiwindup protection. The
controller's integral term is said to

"wind up" whenever the error signal is

stuck in either positive or negative
territory, as in this example. That
causes the integral action to grow
larger and larger as the error accumu-
lates over time. The resulting control

effort also keeps growing larger and
larger until the error finally changes
sign and the accumulated error begins

to diminish.

Unfortunately, a saturated actuator

may be unable to reverse the error. The
engine may not be able to accelerate the

car to the desired velocity, so the error

between the desired velocity and the actu-

al velocity may remain positive

forever. Even if the actual velocity does

finally exceed the setpoint, the accumu-
lated error will be so large by then that

the controller will continue to gem-rate a

very large corrective effort. By the time

enough negative errors have been accu-

mulated to bring the integral term back to

zero, the controller may well have caused
the car's velocity to overshoot the set-

point by a wide margin.

The fix to this problem is to prevent

integrator wind-up in the first place.

When an actuator saturates, the con-

troller's integral action must be artificial-

ly limited until the error signal changes
sign. The simplest approach is to hold the

integral term at
u
s last value when satu-

ration is detected.

Alternative implementations
The PID formula it selfhas also been mod-
ified. Several variations on equation [1]
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have been developed for commercial PID
controllers; the most common being
equation [6] . This version involves differ-

entiating the process variable PV(t)

rather than the error e(t) - SP(t) - PV(t).

The idea here is to prevent abrupt

changes in the controller's output every

time the setpoint changes. Note that the

results are the same when the setpoint

SP(t) is constant.

The tuning constants in equation [6]

differ from those in equation [1] as well.

The controller's proportional gain now
applies to all three terms rather than just

Several subtle flaws in

the basic PID theory

have been discovered

during the last 50 years

of real-life applications.

the error e(t). This allows the overall

"strength" of the controller to be
increased or decreased by manipulating

just P (or its inverse).

The other two tuning constants in

equation [6] have been modified so that

they may both be expressed in units of

time. This also gives some physical

significance to the integral time T,. Note
that if the error e(t) could somehow be
held constant, the total integral action

would increase to the level of the

proportional action in exactly T,

seconds. Although the error should
never remain constant while the con-

troller is working, this formulation does
give the user a feel for the relative

strengths of the integral and propor-

tional terms; i.e., a long integral time

implies a relatively weak integral action,

and vice versa.

For more details on the practical issues of

applying PID controllers to real-life con-

trol problems, circle 209 or refer to

"Process Control Systems" by F. Greg
Skinskey, available from the Foxboro
Training Institute at 1-888-FOXBORO.
The author gratefully acknowledges Mr.

Shinskey's assistance in the preparation of
this article.
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